Package: PRROC 1.3.1

PRROC: Precision-Recall and ROC Curves for Weighted and Unweighted Data

Computes the areas under the precision-recall (PR) and ROC curve for weighted (e.g., soft-labeled) and unweighted data. In contrast to other implementations, the interpolation between points of the PR curve is done by a non-linear piecewise function. In addition to the areas under the curves, the curves themselves can also be computed and plotted by a specific S3-method. References: Davis and Goadrich (2006) <doi:10.1145/1143844.1143874>; Keilwagen et al. (2014) <doi:10.1371/journal.pone.0092209>; Grau et al. (2015) <doi:10.1093/bioinformatics/btv153>.

Authors:Jan Grau and Jens Keilwagen

PRROC_1.3.1.tar.gz
PRROC_1.3.1.zip(r-4.5)PRROC_1.3.1.zip(r-4.4)PRROC_1.3.1.zip(r-4.3)
PRROC_1.3.1.tgz(r-4.4-any)PRROC_1.3.1.tgz(r-4.3-any)
PRROC_1.3.1.tar.gz(r-4.5-noble)PRROC_1.3.1.tar.gz(r-4.4-noble)
PRROC_1.3.1.tgz(r-4.4-emscripten)PRROC_1.3.1.tgz(r-4.3-emscripten)
PRROC.pdf |PRROC.html
PRROC/json (API)

# Install 'PRROC' in R:
install.packages('PRROC', repos = c('https://jgraux.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

8.29 score 51 packages 1.0k scripts 13k downloads 35 mentions 2 exports 0 dependencies

Last updated 6 years agofrom:1d539299ca. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winOKNov 07 2024
R-4.5-linuxOKNov 07 2024
R-4.4-winOKNov 07 2024
R-4.4-macOKNov 07 2024
R-4.3-winOKNov 07 2024
R-4.3-macOKNov 07 2024

Exports:pr.curveroc.curve

Dependencies:

PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R

Rendered fromPRROC.Rnwusingutils::Sweaveon Nov 07 2024.

Last update: 2017-04-21
Started: 2014-12-16